INDOLE DERIVATIVES

L*. CATALYTIC TRANSFORMATIONS OF N-(β -HYDROXYETHYL) ANILINE AND N,N'-DIPHENYLETHYLENEDIAMINE

N. N. Suvorov, N. N. Mitina, and L. I. Zamyshlyaeva UDC 547.751:542.97

The catalytic cyclization of N-(β -hydroxyethyl) aniline and N,N'-diphenylethylene diamine on oxide catalysts based on alumina and silica gel and on activated carbon has been studied in the temperature range from 300-500°C. The following cyclization products have been isolated and identified: N-phenylpyrrole, indole, N-methyl- and 3ethylindoles, N,N'-diphenylpiperazine, and N,N'-diphenylimidazoline.

A number of attempts at the catalytic synthesis of indole from ortho- and N-substituted anilines has been described in the literature, for example: the cyclization of N-(β -hydroxyethyl)aniline [2], o-ethylaniline [3, 4] and o-ethylnitrobenzene [5]; the reaction of aniline with acetylene has also been studied [6, 7]. In the majority of the processes studied, indole is only one of the components of a complex mixture of products. It is accompanied, frequently in predominating amount, by pyrrole, piperazine, and, particularly, quinoline compounds. In addition, considerable resinification takes place which shows the intermediate formation of unsaturated substances, especially vinylaniline [2, 7]. In the final account, the synthetic indole obtained by the method described in the literature requires such laborious purification that it cannot compete with coal-tar indole. Consequently, the question of the industrial synthesis of indole still remains an urgent one. We considered it desirable to use for the closure of the ring reactions taking place under milder conditions than, for example, the dehydrocyclization reaction, although, according to the literature, the latter also gives satisfactory yields of indole [3, 4].

We have studied the cyclization of N-(β -hydroxyethyl)aniline and of N,N'-diphenylethylenediamine on the oxides Al₂O₃ and SiO₂ (pure and with addition of oxides of chromium, cadmium, nickel, titanium, thorium, and zirconium) and on activated carbon.

As a rule, none of the starting material was recovered. The catalysate contained aniline and cyclic products, the compositions and limiting temperatures of which are shown in Table 1.

All the products were isolated and identified on the basis of elementary analysis, melting point, and UV, IR and PMR spectra (Table 2).

EXPERIMENTAL

<u>N-(β -Hydroxyethyl)aniline</u> was obtained by known method [8] and the following constants: bp 140-141°C (1 mm); n_D^{20} 1.5791; mp of the picrate 124-125°C (from ethanol); mp of the N-benzoyl derivative 93-94°C, which corresponds to literature data [9].

* For Communication XLIX, see [1].

Mendeleev Chemical and Technological Institute, Moscow. Translated from Khimiya Geterotsiklicheskikh Soedinenii, Vol. 6, No. 6, pp. 761-765, June, 1970. Original article submitted August 12, 1968.

© 1973 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without permission of the publisher. A copy of this article is available from the publisher for \$15.00.

		Cycliza-		Cyclization produc	cts
Starting material	Catalyst	tion tem- perature, °C	com- pound	name	yield,* wt.%
N-(β-Hydroxy- ethyl)aniline The same	Al ₂ O ₃	300—350 350—400	I II III IV	N _s N'-Diphenyl- piperazine N-Phenylpyrrole Indole 3-Ethylindole	10,0 14,0 6,8 11,1
" "	SiO ₂	350450		N-Phenylpyrrole Indole	следы 2,0
N.N'-Diphenyl- ethylenediamine	Al ₂ O ₃	400—450		N-Phenylpyrrole Indole	10,0 7,6
The same	Al ₂ O ₃ +ThO ₂	420	I	N,N'-Diphenyl- piperazine	4,0
27)7	SiO ₂	400—470	II III V	N-Phenylpyrrole Indole 1-Methylindole	8,5 14,6 5,0
" "	SiO ₂ +ThO ₂	400—450	II III V IV	N -Phenylpyrrole Indole 1 -Methylindole 3 -Ethylindole	7,0 20,0 4,5 5.0
77 77	AG-2 activated carbon	410-430	VI	N,N'-Diphenyl- imidazolidine	12,5
1)))	ThO ₂ on carbon	410	I	N,N'-Diphenyl- piperazine	16,0

TABLE 1. Composition of the Cyclization Products

* Calculated on the substance passed.

<u>N,N'-Diphenylethylenediamine</u> was obtained by our modification of Bennett's method [10], mp 63°C; mp of the diacetyl derivative 158°C, which corresponds to literature data [11]. The elementary analysis and IR spectra of the product itself and of its diacetyl derivative correspond to the composition and spectra of the required compound.

Performance of the Experiments. The experiments were performed in a flow-through catalytic apparatus with an inclined furnace. The diameter of the tube was 35 mm. The bulk volume of the catalyst was 150 ml. The temperature was measured by means of a thermocouple located within the layer of catalyst. The starting material in the form of a benzene solution (ratio of the weight of the substance to that of benzene 1:3) was added uniformly to the catalyst tube by means of an automatic doser. The space velocity was varied from $6.5 \cdot 10^{-4}$ to $13.0 \cdot 10^{-4}$ mole/ml \cdot h. Nitrogen or carbon dioxide (at a rate of 8 liters/h) was used as the carrier gas. The catalysate was collected in a water receiver and the gaseous products passed into a gasometer (at atmospheric pressure).

Isolation and Identification of the Reaction Products. The catalysate obtained was dissolved in a two- to threefold amount of benzene and was washed free from aniline with dilute sulfuric acid. The benzene solution containing the indole and pyrrole compounds was dried with magnesium sulfate; the residue after the benzene had been driven off was vacuum-distilled to free it from resinous impurities. The fraction collected at $55-100^{\circ}$ C (1 mm) was separated in a column of alumina for chromatography of activity grade II (the results of the separation are given in Table 3). When their amount in the catalysate was more than 15%, the N,N'-diphenylethylenediamine and N,N'-diphenylpiperazine were isolated by the recrystallization from 50% ethanol of the mixture of reaction products washed free from amines. When they were present in smaller amounts, the two substances were extracted from the still residue after vacuum distillation of the cyclization products by crystallization from ethanol or acetone. N,N'-Diphenyl-imidazolidine was extracted from the catalysate with methanol and purified by recrystallization from methanol.

	2	p of the Mp of the	UV spec	spectrum		R spectrum	d .	PMR spectrum
Mp,°C	id.	benzene de -	у, пт	log e	v.cm-1	assignment of the absorption bands	ppm on the r scale	assignment of the chemical shifts
61		l	255	4,15	690 730 765 1470 1520 1610	Five adjacent C-H's of a phenyl ring The same Aromatic systems of bonds	2,65—2,75 3,00—3,20 3,85	Proton of $C_{e}H_{5}$ Protons at $C^{-}2_{1,5}$ Protons at $C^{-}3_{1,4}$
52—53	181	187	270 280 288	4,45 3,79 3,64	730 755 770 1460 3420	Four C-H ¹ s of a phenyl ring Aromatic systems of bonds N-H	[1
2122	115	149—150	274 282 290	4,46 3,82 3,74	760 760 1466 1560 1560 2995 2995 3430	Four C-H's of a phenyl ring Aromatic systems of bonds Methyl and methylene groups N-H	I	Ĺ
1	148	1	272 280 294	4,43 3,80 3,72	750 770 1470 1520 1600 2960	Four C-H's of a phenyl ring Aromatic systems of bonds C-H of a methyl group	2,60—2,70 3,26—3,30 3,75—3,78 6,42	Protons of C ₆ H ₄ Proton at C-2 Proton at C-3 Protons of a methyl group
123]		255 290	4,58 3,68	750 750 755 755 755 755 756 756 756 756 756 756	C-H of phenyl groups The same Aromatic systems of bonds C-H of methylene groups	2,80—2,95 3,50—3,55 5,44 6,45	Protons of two phenyl groups Protons of a CH ₂ group Protons of 2,2*-CH ₂
163	113	171	255 292	4,40 3,60	700 770 1500 1580 1600 2852	C-H of phenyl rings Aromatic systems of bonds C-H of methylene groups	3,32 6,80 7,35	Protons of a piperazine ring Protons of two phenyl groups

TABLE 2. Identification of the Cyclization Products

 \ast For the names of the compounds, see Table 1.

ļ

Eluent system	Component eluted	Content of the component in the fraction, wt., %	R _j	
Petroleum ether (light)	N-phenylpyrrole	39,1	0,363	
Petroleum ether-diethyl ether (10:1)	Oily product	4,3	0,655	
Petroleum ether-diethyl ether (8:1)	3-Ethylindole	17,3	0,500	
Petroleum ether-diethyl ether (from 5:1 to 2:1)	Indole	30,4	0,820	

TABLE 3. Chromatographic Separation of the Cyclization Products on Alumina*

*2.3 g of the substance was subjected to separation.

LITERATURE CITED

- 1. N. N. Suvorov and V. N. Buyanov, KhGS [Chemistry of Heterocyclic Compounds], 6, 377, 1970.
- 2. Yu. K. Yur'ev and L. F. Gorin, ZhOKh, 24, 671, 1954.
- 3. F. William and G. A. Mills, US patent No. 2,953,575 (1960); 2,967,202 (1961); E. Sterling, US patent No. 2,886,573 (1959).
- 4. A. A. Artamonov, A. A. Balandin, G. M. Marukyan, and M. I. Kotelenets, KhGS [Chemistry of Heterocyclic Compounds], 3, 565 (1967).
- 5. B. Sila, T. Lesiak, W. Zacharewiez, K. Weselowski, B. Ciszewski, and L. Kaminski, Przem. Chem., <u>41</u>, 70, 1962; T. Lesiak, Przem. Chem., <u>41</u>, 140, 1962.
- 6. N. S. Kozlov and S. Ya. Chumakov, ZhPKh, <u>32</u>, 1149, 1959.
- 7. R. Majimo, T. Unno, and K. Ono, Ber., 55, 3854, 1922.
- 8. N. S. Vul'fson, Preparative Organic Chemistry [in Russian], Moscow, p. 411, 1964.
- 9. P. P. Shorygin and V. N. Belov, ZhOKh, 5, 1707, 1935.
- 10. G. M. Bennett, J. Chem. Soc., 115, 577, 1919.
- 11. C. A. Bischoff and O. Nastvogel, Ber., 22, 1785, 1889.